

GDS RNA First Strand Synthesis Module

使用说明书

货号/规格: K020-A/24 rxns; K020-B/96 rxns

产品简介

GDS RNA First Strand Synthesis Module 是 RNA 第一链合成模块,该模块已经过优化,可使用随机引物将大范围输入量的 RNA 转化为 cDNA。

该模块可与 GDS Directional RNA Second Strand Synthesis Module (# K021) 特异性 RNA 第二链合成模块或 GDS Non-Directional RNA Second Strand Synthesis Module (# K022) 非特异性 RNA 第二链合成模块一起使用。这些工作流程与 poly(A) mRNA 分离或核糖体 RNA 缺失兼容,并且能够从 10 ng - 1 μg 总 RNA 中高产量地制备高质量文库。

产品组成

组分	K020-A (24 rxns)	K020-B (96 rxns)
GDS First Strand Synthesis Enzyme Mix	192 µL	768 µL
GDS First Strand Synthesis Reaction Buffer	48 µL	192 µL
Random Primers	48 µL	192 µL
GDS Strand Specificity Reagent	192 µL	768 µL

储存条件及有效期

所有试剂均应保存于-20℃,产品有效期为 18 个月。

适用范围

用于 NGS 建库中的 RNA 合成第一链 cDNA。

RNA 样本建议

RNA 完整性:

RNA 完整性数(RIN)是使用样品中的核糖体 RNA (rRNA)数量计算的。如果通过任何方法去除 rRNA,则不应使用 RIN 值来评估 RNA 样品的完整性。在这种情况下,我们建议,如果

怀疑 RNA 样品是低质量的,则片段化时间需要经过验证确定。以下建议仅适用于总 RNA 样本。

通过在 Agilent 生物分析仪 RNA 6000 Nano/Pico Chip 上运行 RNA 样品来评估输入 RNA 的质量,以确定 RNA RIN。具有不同 RIN 值的 RNA 需要不同的片段化时间或根本不需要 片段化。对于高度降解的样品(RIN = 1 ± 2)(例如 FFPE),不需要片段化。

RNA 纯度:

RNA 样品应不含 DNA、盐(如 Mg^{2+} 或胍盐)、二价阳离子螯合剂(如 EDTA、EGTA、柠檬酸盐)或有机物(如苯酚和乙醇)。

投入量要求:

1 ng - 100 ng 总 RNA,纯化的 mRNA 或纯化后定量的 rRNA 缺失 RNA。RNA 应不含 DNA,在 5µL 无核酸酶的水中用 Qubit Fluorometer 定量,并用生物分析仪检测质量。

该方案针对大约 200 nt RNA 插入进行了优化。要生成具有更长的 RNA 插入长度的文库,请参考其他推荐的片段时间。

应用举例

注意:本操作程序仅适用于总 RNA、纯化 mRNA 或 rRNA 缺失 RNA。

1.1. RNA 片段化和结合引物

完整或部分降解的 RNA 需要片段化。建议的片段化时间见表 1。

1.1.1. 在无核酸酶的试管中,加入以下组分,在冰上配制片段化碎片和结合引物的反应体系:

组分	用量
纯化 mRNA 或去除 rRNA 的 RNA	5 μL
GDS First Strand Synthesis Reaction Buffer	4 μL
Random Primers	1 μL
	10 µL

- 1.1.2 用移液器轻轻上下移液至少 10 次, 使整个体积混合均匀。
- 1.1.3. 将样品放入热循环器中,并按照表 1 中的建议在 94° C 下孵育样品,使插入片段尺寸为~ 200nt。

表 1 根据 RNA 的 RIN 值建议的片段时间

RNA 类型	RIN 值	片段化时间
完整 RNA	> 7	94°C 15 min

部分降解 RNA 2~6 94°C 7~8 min

- 1.1.4. 立即将 PCR 管转移到冰上并进行第一链 cDNA 合成。
- 1.2 第一链 cDNA 合成反应

注意:根据后续第二链 cDNA 合成模块的不同选择方案 A 或方案 B。

Protocol A: 与 GDS Directional RNA Second Strand Synthesis Module (# K021)搭配 使用的程序

1.2.1. 在冰上组装第一链合成反应,将以下组分加入步骤 1.1.4 中的片段化并结合了引物的 RNA 中:

组分	用量
片段化并结合了引物的 RNA(1.1.4)	10 μL
GDS Strand Specificity Reagent	8 µL
GDS First Strand Synthesis Enzyme Mix	2 µL
总体积	20 µL

- 1.2.2 用移液器轻轻上下移液至少10次,使整个体积混合均匀。
- 1.2.3 在 PCR 仪中设置热盖≥80°C, 预热后进行如下反应:

温度	时间
25°C	10 min
42°C	15 min
70°C	15 min
4°C	hold

注意:如果您使用更长的 RNA 片段(>200nt),请将第二步 42°C 孵育时间从 15 分钟增加到 50 分钟。

1.2.4. 使用 GDS Directional RNA Second Strand Synthesis Module (# K021)直接进行第 二链 cDNA 合成。

Protocol B: 与 GDS Non-Directional RNA Second Strand Synthesis Module (# K022) 搭配使用的程序

1.2.1. 在冰上组装第一链合成反应,将以下组分加入步骤 1.1.4 中的片段化并结合了引物的 RNA 中:

组分	用量
片段化并结合了引物的 RNA(1.1.4)	10 µL
Nuclease-free Water	8 µL
GDS First Strand Synthesis Enzyme Mix	2 µL

总体积 20 μL

- 1.2.2 用移液器轻轻上下移液至少10次,使整个体积混合均匀。
- 1.2.3 在 PCR 仪中设置热盖≥80°C, 预热后进行如下反应:

温度	时间
25 °C	10 min
42°C	15 min
70°C	15 min
4°C	hold

注意: 如果您使用更长的 RNA 片段(>200nt),请将第二步 42°C 孵育时间从 15 分钟增加到 50 分钟。

1.2.4. 使用 GDS Non-Directional RNA Second Strand Synthesis Module (# K022) 直接进行第二链 cDNA 合成。

本品仅供科学研究使用。